砂带凯迪垫圈外齿刚轮北京工业大学北京市精密测控技术与仪器工程技术研究中心,北京 100124;
河南科技大学河南省机械设计及传动系统重点实验室,河南 洛阳 471003摘要:
相对于接触式测量,机器视觉检测这种非接触式测量具有效率高、信息全、稳定性好、可识别缺陷等优点,在齿轮检测领域得到越来越广泛的应用。近十年来出现了影像仪、闪测仪、CVGM仪器、在线检测设备等多种基于机器视觉技术的齿轮检测仪器,它们既可以实现齿轮综合式测量,又可以实现齿轮分析式测量。回顾了齿轮视觉检测仪器的发展历程和特点,分析了齿轮视觉检测中边缘检测、亚像素定位、特征提取和模式识别等算法的研究和应用进展,总结了机器视觉在齿轮精度测量和齿轮缺陷检测两个方面的技术发展,并指明了齿轮视觉检测仪器与技术的发展前景。关键词:
齿轮测量可分为接触式测量和非接触式测量。由于齿轮形状复杂,精度要求高,传统的非接触式测量方法难以满足齿轮测量精度要求,因此传统的齿轮检测设备通常采用接触式测量方式。应用广泛的齿轮测量中心和齿轮双啮检查仪分别是齿轮分析式测量设备和综合式测量设备,均为接触式测量方式。随着计算机技术和视觉测量技术的进步,机器视觉测量精度逐渐提高,在一些场合已经可以满足齿轮检测的需求。相对于接触式测量,机器视觉测量具有效率高、信息全、稳定性好、可识别缺陷等优点,在齿轮测量领域应用越来越广泛。近年来出现了影像仪、闪测仪、computer vision gear measurement(CVGM)仪器、在线检测设备等多种基于机器视觉技术的齿轮检测仪器,它们既可以实现齿轮综合式检测,又可以实现齿轮分析式测量,更能进行齿轮缺陷检测。
接触式测量属于串联测量模式,通过测量齿面上一系列点来完成某种测量目标,测量效率较低,大批量齿轮的在线全检是个挑战。此外,接触式测量方法只能测量齿轮的尺寸和精度,难以进行齿轮缺陷检测。目前齿轮产品的外观缺陷主要依靠肉眼筛查,一些细微缺陷还要借助放大镜、工具显微镜等辅助设备进行识别,这些设备检测效率低、误检率高,且无法对缺陷进行准确分类和溯源。
齿轮视觉检测属于并联测量模式,一次测量可获取整个区域内的几何要素和外观缺陷数据,检测速度得到极大提升,可以用于大批量齿轮的全检;更重要的是能同时进行齿轮精度测量和齿轮缺陷在线检测。基于视觉的齿轮精度测量是齿轮精度理论与机器视觉技术的有机结合,作者将我国首创的齿轮整体误差理论融入齿轮视觉检测技术中,大大拓展了对齿轮误差的分析能力。齿轮缺陷在线视觉检测技术可实现对大批量齿轮的100% 全检,柔性和自动化程度高,既能实时反映生产状态,及时预警,也方便管理者掌控一定周期内产品质量变化,还可以根据大数据做进一步的质量评估、产能分析和工艺优化。
如图1 所示,齿轮视觉检测仪器由工业相机、镜头、光源、计算机等几个主要部分组成。常用两种照明方式:图1(a)采用背光光源从待测齿轮下方照明,采集到的是齿轮投影图像,齿轮边缘锐度高、噪声小,此方式适用于齿轮精度测量;图1(b)采用正光光源从待测齿轮上方照明,采集到的是齿轮端面图像,能够凸显齿轮表面缺陷特征,此方式适用于齿轮表面缺陷检测。
世界上第一台由电机驱动的自动影像测量系统是1977 年由美国View Engineering 公司研发的“RB-1”系统。目前,国内外有众多企业生产自动式影像仪,典型有瑞典海克斯康、德国蔡司、日本三丰、深圳中图仪器、贵阳新天光电、苏州天准科技等。自动式影像仪在工作台的X、Y 和Z 轴方向可以精确移动,能够实现自动对焦,测量精度更高。通过示教或编程可以实现齿轮测量中的自动取点,但操作过程较为复杂,对操作人员要求高。自动式影像仪一般没有齿轮测量专用软件,能够测量的齿轮指标不全,不能进行精度评价和分析。
传统影像仪视场一般较小,为了获取整个齿轮端面轮廓,需要进行图像拼接。手动式影像仪进行图像拼接时效率低、难度大,精度也较差。自动式影像仪可以实现图像的自动拼接,效率较高,但拼接成的图像存在亮度、对比度不均匀的现象,尺寸测量精度同样受到影响。
近年来,市面上出现一种新型的一键式影像测量仪(闪测仪),视场范围大,可以一次测量多个零件。日本基恩士的IM-8000 闪测仪可在数秒内同时完成最多100 个目标物、300 个部位的测量,可以任意摆放工件,一键自动识别,自动匹配测量。独特的亚像素处理技术可使图像分辨率达0. 01 pixel,测量精度达±2 μm。深圳中图仪器的VX8000 系列闪测仪也可实现同等级的测量精度。此外,闪测仪还可导入CAD 图,通过“比较测量”识别缺陷,如将实际齿廓图像与标准CAD 图的齿廓对比,可以得到缺齿、断齿等缺陷信息。闪测仪的测量效率相比传统影像仪显著提升,但价格昂贵,同样缺少齿轮精度评价专门功能。
1980年代,日本和我国开始了齿轮激光全息测量技术研究。基本原理如图9所示,以单频的氦氖激光器为光源,首先在干涉测量系统获得参考标准齿面的全息图像,然后将标准齿面替换为被测齿面放置于干涉测量系统中,同时将已经拍摄到的全息图像置于系统中。测量时,激光经分光棱镜分光扩束后分为了测量光路和参考光路,其中测量光照射到被测齿面上。两束光线同时照射在全息图上,形成了被测齿面和参考齿面间的干涉条纹,并投影在接收屏幕上。在对条纹图像进行数据处理后,可以得到被测齿面相对于标准齿面的形状误差。在测量光与全息图像之间放入平行平晶,用来调整测量光的相位。
对于模数0. 2 mm 以下的小模数齿轮,难以使用接触式方法测量齿廓、齿距、公法线长度等关键参数;现有影像式测量设备不能给出齿轮精度评价报告。如图2所示,CVGM 仪器专用于解决小模数齿轮测量难题,可在1 s内自动计算出齿廓、齿距、径向跳动、公法线长度、齿厚变动量、内孔尺寸、实际压力角等关键精度信息,自动根据齿轮精度标准ISO-1328对齿轮误差进行评级,输出完整的齿轮精度检测报告,并做出OK/NG 判断。CVGM 仪器的齿廓偏差测量精度为±3 μm,齿距偏差测量精度为±2 μm,具有强大的分析功能,可测量双向截面整体误差曲线(SJZ 曲线)。
图4位于传送带上方的齿轮视觉在线检测设备,优点是占用空间小,但传送带运动不平稳和易磨损,产品摆放角度不固定,导致检测精度难以提高。由于传送带不透光,该设备无法获取齿轮与传送带接触面的图像,不能实现双面测量。
本团队研制了玻璃转盘式的注塑齿轮在线 所示,该系统已应用于注塑齿轮生产线,工作稳定,取得了突出的使用效果。玻璃转盘由伺服电机和精密减速器驱动,带动待检齿轮通过视觉检测工位,可保证图像采集过程中齿轮匀速平稳运动。转盘采用高透明玻璃材质,不需翻转就可得到产品底部的检测图像。由光电传感器定位齿轮在转盘上的位置,使用气动执行器将OK/NG 的齿轮吹入相应的存储盒实现自动分拣。该系统能够实现注塑齿轮黑点、毛刺、缺齿、断齿、翘曲变形等外观缺陷检测,也能完成常规几何尺寸和形位误差的测量,并能根据缺陷阈值、尺寸公差实时分选出合格品和不合格品,且具备报警功能。该系统对齿轮端面的检测时间小于0. 3 s,满足生产节拍的需求,特别是具有齿轮轴向测量功能。
图7 为注塑齿轮在线检测分选系统软件界面。该软件具有自主知识产权,在软件数据库中贮存了常见齿轮型号及对应的尺寸公差和配置参数,包括CPK 分析和XR 图分析,提高了参数输入效率。注塑齿轮在线检测分选系统兼具精密测量与缺陷检测功能,包括齿轮轴向高度、齿距、公法线、同心度等与齿轮精度相关的检测,齿轮外观缺陷识别准确率能满足注塑齿轮大批量在机检测需求。
齿轮视觉检测技术是齿轮视觉检测仪器的核心,涉及光学、电子学、计算机图形学、齿轮几何学等多个学科,内容覆盖光学成像、图像处理、软件工程、工业控制、传感器、齿轮精度理论等。近几年,与齿轮视觉检测技术相关的新技术、新理论、新方法大量出现,在多个核心问题上取得了重要的研究进展。齿轮视觉检测技术既有一般视觉检测的共性问题,又有齿轮视觉检测中的特殊问题。齿轮视觉检测的工作流程包括图像采集、图像预处理、边缘检测、齿轮精度评定或齿轮缺陷分析等,其中图像采集、图像预处理、特征提取、图像分割、边缘检测、亚像素算法等属于通用的视觉检测技术,而齿轮精度评定和齿轮缺陷识别属于齿轮视觉检测技术的个性问题。
这里先从图像采集系统(硬件)和图像处理算法(软件)两个方面综述与齿轮视觉检测技术相关的共性问题的研究进展,然后从齿轮精度测量和齿轮缺陷检测两个方面介绍齿轮视觉检测技术中个性问题的研究进展。
图像采集系统一般由计算机(主机)、图像采集卡、工业相机、镜头、光源等组成。工业相机按照传感器芯片种类可分为CCD 相机和CMOS 相机两种,传统上CCD 相机效果更好,但随着技术的发展,目前在一般应用场合CMOS 相机基本已经取代了CCD 相机。相机数据接口常见的有GigE 接口、USB 接口(USB2. 0和USB3. 0)、Cameralink 接口等。其中采用GigE 或USB 接口的工业相机可以直接通过线缆与主机通讯,不需要数据采集卡;而其他接口如Camerlink 接口的相机则需要配备图像采集卡才能与主机通讯。
常用的工业镜头按等效焦距分类主要有广角、长焦、中焦、远心、微距镜头等。一般远心镜头的畸变更小,景深更大,可以消除“近大远小”的测量误差,更适合进行高精度的尺寸测量,因此在齿轮视觉检测领域使用最多的镜头为远心镜头。但远心镜头通常价格较高,对精度测量要求不高时,可用普通镜头替代。
视觉检测领域常用的光源有点光源、面光源、条形光源、环形光源、穹顶光源、同轴光源等类型,其作用主要有强化特征和弱化背景、突出测量特征、提高图像信息、简化算法、降低系统设计的复杂度、提高系统的检查精度和效率。在齿轮精度测量领域常用的光源主要是面光源,面光源的光线具有更好的方向性,均匀性更好,齿廓更清晰;在齿轮缺陷检测领域主要使用穹顶光源、环形光源和同轴光源等,这些光源可使整个齿轮端面图像的照度十分均匀,突出缺陷特征。
齿轮视觉检测的核心问题是测量精度和检测效率,这两个问题都与图像采集系统密切相关。为了提高测量精度,应当选用分辨率更高的相机;为了提高检测效率,需要选择分辨率低的相机,以减少需要处理的数据量,提高软件计算速度。精度和效率是一对矛盾,通过选用运算能力更强的计算机和改进图像处理算法的效率,可以部分地解决精度和效率的矛盾问题。无论是为了提高检测精度还是为了提高检测效率,选用精度更好的镜头和更加稳定的光源都可以改善整体的性能指标。
图像边缘一般是图像灰度变化率最大的位置,因此可用一阶/二阶导数来检测边缘,由此诞生了一系列经典微分算子。根据微分的阶数可以将经典微分算子分为两类:一类是通过寻找图像灰度值的一阶导数极值点来确定边界的一阶微分算子,有Roberts 算子、Prewitt 算子、Sobel 算子、Canny 算子;另一类是根据图像二阶导数的零点来寻找边界的二阶微分算子,有Laplacian 算子、LoG(Laplacian-of-Gaussian)算子、DoG(Difference-of-Gaussian)算子。对这些经典微分算子在齿轮边缘检测中的性能进行了比较,如表1 所示。
小波变换具有良好的时频局部化特性和多尺度特性。良好的时频局部化特性使其特别适用于检测突变信号,而图像中的突变信号对应边缘,因此小波变换也适用于图像边缘检测。利用Harr 小波函数对齿轮图像进行重构,再结合Canny 算子提取重构图像的齿廓,比单独采用Canny 算子有更优的效果。多尺度特性使其能很好地抑制噪声。图像中的噪声和边缘都属于高频分量,经典微分算子引入各种形式的微分运算后必然对噪声较为敏感,而随着尺度的增加,噪声引起的小波变换的模的极大值迅速减小,而边缘的模值不变,这一特性可以很好地抑制图像噪声。提出一种基于Curvelet 变换的尺度与方向相关性联合降噪方法,该方法对齿轮图像进行降噪处理,在继承小波变换多尺度降噪的基础上,同时进行尺度内方向相关性降噪,可以为齿轮边缘检测提供高质量的输入图像。因此,小波变换是一种齿轮图像边缘提取的有效方法。
数学形态学是基于积分几何和几何概率理论建立的关于图像形状和尺寸的研究方法,其实质是一种非线性滤波方法,通过物体形状集合与结构元素之间的相互作用对图像进行非线性滤波。由于数学形态学提取边缘时容易造成间距小的低灰度轮廓的错位和合并,因此常将其与微分算子提取出的轮廓加权融合。相关文献就提出了一种融合Canny 算子和数学形态学的含噪声齿轮图像边缘检测算法,分别采用改进的Canny 算子和多尺度多结构元素灰度形态学边缘检测算子提取边缘;然后对两幅边缘图像进行了小波分解,得到各层子图像;最后对子图像进行自适应加权融合,并使用小波逆变换重构图像得到最终的边缘检测图像。相关文献采用数学形态学中的四邻域腐蚀法提取出边缘宽度,并将其作为单个像素的轮廓,测量分度圆直径为5 mm 以下的齿轮的齿顶圆直径和齿根圆直径,与千分尺测量结果差值的绝对值在2 μm 以内。
数字图像是以离散化的像素形式存在的,传统边缘检测算法的测量分辨率只能达到一个像素级,提取出的边缘由像素块构成,边缘定位精度不高,如图9(c)所示。亚像素定位算法是在像素级边缘检测的基础上逐渐发展而来的,首先需要经过像素级边缘检测粗定位,然后利用粗定位边缘点周围邻域内的像素数据进行边缘点的亚像素级精确定位,如图9(d)所示。
矩方法计算简便,应用于齿轮边缘检测可以减小测量误差。相关文献提出一种利用前三阶灰度矩进行亚像素边缘定位的算法,这是文献中最早提出的矩方法。随后基于空间矩、Zernike 正交矩的方法也相继被提出。相关文献利用基于Zernike 矩的齿廓边缘检测算法,对齿顶圆直径为49. 751 mm、齿数为23 的齿轮测得的齿顶圆直径、齿根圆直径的相对误差在0. 02% 以内,齿距累积总偏差的相对误差约5. 15%。相关文献提出一种基于灰度矩的亚像素边缘检测算法,该算法以邻域窗口的灰度均方差积表示边缘强度,灰度重心所在的方向表示灰度变化的方向,在初始边缘的基础上按求取的灰度变化方向划分为八个区域,构建一维灰度矩模型解算亚像素边缘位置,对于噪声系数为0. 005 的模拟图像,该算法的绝对定位误差为0. 013 pixel。相关文献提出了一种复合亚像素边缘检测方法,该方法基于orthogonal Fourier-Mellin moment(OFMM),可为后续齿廓缺陷检测提供精确的齿廓形状。
插值法运算速度快,应用于齿轮在线检测设备能够满足生产节拍的要求。插值法的核心是对像素点的灰度值或灰度值的导数进行插值,以增加信息。德国MVtec 公司开发的著名机器视觉算法包Halcon 在工业领域应用广泛,其中的亚像素边缘检测算子采用的就是插值法。相关文献基于Halcon 算法包中的亚像素边缘检测算子,开发了一套齿轮测量应用程序,可以得到齿廓亚像素点集合,并设定条件剔除假边缘,最终得到齿顶圆直径等参数。
拟合法对噪声不敏感,适用于噪声较多的齿轮图像,但求解速度较慢。拟合法是通过对像素坐标和灰度值进行理想边缘模型拟合来获得亚像素边缘的。相关文献提出一种基于高斯积分曲面拟合的亚像素边缘定位算法,可最大限度地消除噪声的影响,与原有高斯拟合算法相比,该算法通过坐标变换简化了曲面拟合问题,计算速度提高1 倍,可以满足五级精度的渐开线直齿圆柱齿轮的齿廓偏差测量要求。
特征提取的有效性对后续目标缺陷识别精度、计算复杂度、检测鲁棒性等均有重大影响。常用的特征提取算法可以分为三种,分别是基于纹理、颜色和形状的特征提取算法。提取完特征后,还需采用模式识别算法对缺陷进行区分。模式识别算法主要有匹配识别和分类识别两类。齿轮缺陷检测常用的匹配识别算法有FAST 和SIFT 算法等,常用的分类识别算法有基于人工神经网络或支持向量机的算法。相关文献提出了一种基于FAST-Unoriented-SIFT 提取算法和BoW(Bag-of-Words)模型的行星齿轮故障识别方法,该方法将原始振动信号转换为灰度图像后,通过FAST-Unoriented-SIFT 算法直接提取灰度图像中的特征。FAST-Unoriented-SIFT 算法结合了FAST 和SIFT 算法的优点,忽略了特征的方向。最后在提取的特征的基础上建立BoW 模型,该方法对齿轮故障的整体识别率达98. 67%。相关文献提出了一种改进的GA-PSO 算法,称为SHGAPSO算法,先经过图像分割算法提取齿轮的几何形状、纹理和颜色特征,再重建BP 神经网络,并使用SHGA-PSO 算法优化结构和权重。SHGA-PSO 算法对坏齿、划痕、磨损和裂纹4 种不同的齿轮缺陷样本的识别正确率在94% 以上。相关文献基于YOLO-v3 网络实现了对金属齿轮端面凸起、凹陷和划痕三种缺陷的快速检测和定位,对每幅图像的平均检测时间为77 ms,对三种缺陷的平均精确度(AP)和平均召回率(mean recall)分别为93% 和91%,检测效果如图10 所示。
齿轮形状复杂,精度要求高。为保证齿轮产品质量,需要控制的齿轮精度指标有齿距偏差、齿廓偏差、螺旋线偏差、齿厚、齿圈跳动等,其中除螺旋线偏差外,其他精度指标都可以用齿轮端截面轮廓数据进行计算。齿轮精度测量主要有两个问题需要解决,一是通过图像处理获得被测齿轮的精确的端面轮廓信息,二是根据齿轮精度理论和相关齿轮精度标准计算齿轮各项偏差值并给出齿轮精度评定结果。
通过齿轮精度等级,可以确定对视觉检测系统的测量精度要求。以齿数20、模数1 mm、5 级精度的直齿圆柱齿轮为例,其齿距累积总偏差为11 μm,齿廓总偏差为4. 6 μm。按测量仪器精度为被测指标允差的1/3~1/5 估算,测量5 级精度齿轮的测量仪的精度应优于1. 6 μm。这对视觉测量而言,是非常困难的。
齿轮视觉测量精度依赖于测量系统的硬件和数据处理算法。由于所用相机、镜头等图像采集系统硬件和图像处理算法等软件的不同,以及被测对象齿轮的尺寸参数和精度要求不同,齿轮视觉检测系统的测量精度的差异很大,但在齿轮被测项目评定方面,都是根据齿轮精度相关标准进行的。相关文献依据齿轮精度标准ISO1328-1,给出了视觉测量齿距偏差和齿廓偏差的评定方法,对模数为0. 5 mm 的8 级精度直齿轮测得的齿距偏差、齿廓偏差与齿轮测量中心的测量结果差值最大为4 μm。相关文献采用视觉测量方法测量模数为2 mm、齿数为90的齿轮,齿廓总偏差5 次测量的标准差为0. 028 μm,取得了很好的测量重复性。相关文献提出了视觉测量齿轮的公法线长度的方法,其测量精度能够满足工程应用要求。
值得指出,Werth 公司推出的基于光纤测头的微小模数齿轮测量设备采用了接触式测量和视觉检测技术相结合的方法,该方法既具有视觉测量的特点,可借助视觉引导实现对微小齿槽的测量;又具有接触式测量的特点,需要用光纤测球扫描齿轮轮廓,测量精度较高但效率较低。由于仪器价格高,这种基于光纤测头的齿轮测量仪器实际应用较少。
除了齿廓偏差、齿距偏差、齿厚等轮齿精度指标外,齿轮视觉测量技术还可以获得齿轮的形位误差。GB/T 1182—2018 规定齿轮图纸中通常要标注内孔圆度、端面跳动或垂直度、分度圆跳动等的形位公差,这些都可以通过视觉测量完成。此外,近年来出现了基于视觉方法的齿轮表面粗糙度测量研究。有文献提出一种基于卷积神经网络(CNN)建立粗糙度参数Ra 与处理后的齿轮感兴趣区域(ROI)图像之间关系的方法,该方法可以在无需人工参与的情况下自动检测齿轮表面粗糙度,平均测量时间约为0. 5 s,比使用接触探针测量齿面粗糙度的方法快40 倍。
我国科技工作者在1970 年前后首创的齿轮整体误差测量技术可快速获取包含被测齿轮全部齿廓误差信息的双向截面整体误差曲线(SJZ),进而方便地分析出齿廓偏差、齿距偏差、齿厚变动量等齿轮误差项目,可以直观地对齿轮加工质量和使用性能进行分析和评价,具有测量效率高、信息全的优点。但由于作为测量元件的跳牙蜗杆制造困难、通用性不好,传统上齿轮整体误差测量技术通常只适用于大批量生产的齿轮产品。与齿轮整体误差测量技术类似,齿轮视觉测量技术也可以快速获得被测齿轮的全部齿廓信息,因此也可以使用齿轮整体误差曲线进行测量结果的表达、分析与处理。CVGM 视觉齿轮测量软件中就采用双向截面整体误差曲线作为全部齿廓测量结果的表达方式。图11 为CVGM 获取的SJZ 曲线,其中最外圈为左齿面整体误差曲线,其次为右齿面整体误差曲线,最内圈为齿轮内孔圆度误差曲线。图中可见被测齿轮具有中凸齿廓,整体几何精度较好,但在个别轮齿交替时(左齿面2-3 齿交替、3-4 齿交替)会产生较为明显的啮合冲击。其中,该被测齿轮作为被动齿轮在左齿面2 齿、3 齿啮入时会产生刚性冲击,作为主动齿轮在左齿面2 齿、3 齿啮出时会产生柔性冲击。从双向截面齿轮整体误差曲线还可以看出各轮齿齿距、齿厚的变化规律[9]。通过与齿轮视觉检测技术相结合,齿轮整体误差测量技术和齿轮整体误差理论又获得了新的发展机会。
为提高测量精度,CVGM 创新性地提出了基于“ 虚拟样板”的齿轮测量软件精度标定方法。在CVGM 系统中,测量精度是分为两个环节进行保证的:首先通过测量标定片对图像采集系统的精度进行标定;其次使用虚拟齿轮样板对测量软件算法的精度进行标定。图12(a)为对标定片进行测量的结果,标定片上各个圆点的直径理论值为0. 5 mm,标定片的图形制造误差小于等于1 μm,CVGM 计算出的各个圆点的直径误差均在1 μm 以下。图12(b)为采用CAD 软件绘制的无误差的标准齿轮图像,图片像素大小与实际图像采集系统CVGM-12H 的像素大小相同,均为3. 668 μm。CVGM 对无误差齿轮图像进行测量时,由图像处理算法和齿轮精度评定算法引入的齿廓偏差小于等于2 μm,齿距偏差小于等于1 μm。试验中CVGM 系统测量重复性误差为±1μm,可以满足齿数为20、模数为1 mm、5 级精度的直齿圆柱齿轮的精度测量要求。此外,CVGM 软件还可以自动计算内孔圆度、齿圈跳动、公法线长度等误差项目。
制造过程中由于材料、设备和工艺等问题,会产生齿轮缺陷。齿轮缺陷视觉检测技术的关键指标是缺陷识别的准确率和效率。图13 为齿轮的常见缺陷,包括毛刺(披锋)、缺料、裂纹、收缩、变形、穿孔、流纹、烧胶、凹痕、色差、坏齿、凸起、气泡和溢边等。齿轮视觉检测系统采集并处理齿轮表面图像,利用图像分割、特征提取和模式识别等算法获取缺陷的特征信息,实现对缺陷的定位、识别、分类和统计。
齿廓缺陷检测是齿轮缺陷检测研究中的重点,齿廓好坏与齿轮传动性能密切相关。齿廓具有固定的形状特征,一旦出现缺陷就意味着形状改变。因此,齿廓缺陷检测通常需要先用边缘检测算法提取齿廓边缘,再利用基于局部灰度特征统计或形状特征提取的方法对齿廓边缘的每个亚像素点进行几何特征分析来识别齿廓缺陷。相关文献通过连通域标记算法对每个连通域进行细分区域灰度值分析,对灰度值分析结果进行阈值判别从而提取齿轮缺角、缺齿缺陷。相关文献针对彩色塑料齿轮图像,采用基于决策树的局部阈值方法对图像进行分割来检测齿轮的缺齿情况。有文献提出“虚拟圆扫描法”,通过对一系列相关交点之间的距离比值与设定的比值系数进行比较,确定齿廓是否合格。当齿廓缺陷随机性较强时,可采用机器学习算法来提高识别的正确率。相关文献采用支持向量机来构造齿轮缺陷识别模型,模型识别齿廓缺陷的正确率达97. 8%。
毛刺是齿轮在生产过程中出现的一些飞边、棱边、尖角等,是齿轮最为常见的缺陷。齿轮毛刺是齿轮制造工艺不当引起的,尺寸细小,肉眼难以发现,出现位置随机,较为频发,是齿轮缺陷检测中的必检项。由于毛刺常出现于齿轮轮廓边缘,因此通常需要进行边缘检测,再根据齿轮的几何特征来判别和定位毛刺。本团队针对注塑齿轮的中孔披锋(毛刺)缺陷,先采用亚像素定位算法精确定位中孔轮廓,再计算轮廓上各点到齿轮中心的径向距离,根据径向距离的异常值判定是否存在中孔披锋。
齿轮的表面异物缺陷包括油污、黑点、材料中的杂质等。这类缺陷通常会构成图像上的连通域,通过图像分割、Blob 分析等方法可以得到连通域的质心坐标、面积、圆形度、凹凸度和惯量比等几何形状特征,从而获取表面异物的个数、位置和大小等信息。
裂纹是金属齿轮的一种外观缺陷,与裂纹类似,流纹是注塑齿轮特有的一种外观缺陷。针对这两种缺陷的检测方法一般分为两个步骤:一是检测齿轮表面是否存在裂纹/流纹;二是提取裂纹/流纹。合格的齿轮产品表面较为光滑,灰度变化均匀;裂纹/流纹则与周围灰度值有明显差异,具有明显的纹理特征,因此常采用基于统计的灰度特征或阈值分割法进行提取。
翘曲变形是注塑齿轮的常见缺陷类型,体现为塑料齿轮的几何形状与模具型腔的形状发生了偏离,超出了公差范围。通常可以通过测量塑料齿轮的特征尺寸(如齿距、齿厚)来识别。本团队选取斜齿轮齿厚标准差或直齿轮齿厚最小值作为特征值,利用支持向量机分类器进行翘曲变形缺陷判别,成功检测出200 个样品中的19 个存在翘曲变形缺陷的齿轮。
当齿轮表面缺陷特征较多时,通常要通过基于机器学习的目标分类算法来进行判别。如有文献提出一种改进的YOLO-v3 网络,用DenseNet 代替YOLOv3网络中的DarkNet-53 网络,对塑料齿轮的污痕和缺齿缺陷进行检测,误检率为1. 3%。相关文献采用基于CNN 的两种分类方法Naïve 法和fine-grained 法对齿轮的划痕、凸起、孔蚀、块状不对称缺陷进行识别,Naïve 法处理时间更少,平均时间为0. 09 s,准确率为92%,而fine-grained 方法在准确性方面更好,准确率为96. 5%,平均时间为0. 67 s。本团队研制的注塑齿轮在线检测分选系统能够实现对注塑齿轮材料杂质、黑点、油污、烧胶、毛刺、气泡、水口穿孔、缺齿、断齿、收缩、翘曲变形等多缺陷的融合检测,还可以测量齿轮几何尺寸和形位误差,特别是具有齿轮轴向测量功能,可实时分选出合格品和不合格品,具备报警功能,检测效率高、功能全,是目前注塑齿轮视觉在线检测专用设备。
随着齿轮视觉检测技术的发展,齿轮视觉检测仪器已经可以实现齿轮精度评价和齿轮缺陷检测,已在众多小模数齿轮生产企业得到应用,可以有效地管控产品质量、改进加工工艺、提高产能,取得了较好的使用效果。在齿轮视觉检测技术发展过程中,软件算法是技术壁垒和核心竞争力的集中体现。相对于齿轮精度测量,面向齿轮缺陷检测的技术较为成熟。
目前,齿轮机器视觉测量仪器和技术的研究和应用主要集中在小模数齿轮领域的原因如下:在机器视觉测量中,测量精度和测量范围(视场范围)是一对矛盾,现有的机器视觉测量仪器难以同时满足中、大模数齿轮对视场范围和测量精度的要求;小模数齿轮的齿槽宽度小、轮齿刚性差,常规的接触式测量仪在测量小模数齿轮时效率低、测量困难,不能满足小模数齿轮的测量需求。但齿轮机器视觉测量技术也有不足。除了固有的测量精度相对较低的缺点外,由于轮齿遮挡问题,齿轮机器视觉测量技术目前不能实现对圆柱齿轮的螺旋线测量和对锥齿轮、斜齿内齿轮等特殊齿轮的测量,限制了齿轮机器视觉测量技术的推广和应用。
在齿轮精度测量研究方面,提高视觉测量精度仍将是难点和着力重点;在齿轮缺陷检测研究方面,目前对齿轮缺陷检测的研究不够深入,可检的缺陷种类不全,提高缺陷识别准确率和效率是着力重点。
随着人工成本的增加和产业升级需求的提升,在大规模齿轮生产过程中齿轮视觉在线检测设备的应用越来越多。齿轮视觉在线检测设备的特点有:耦合于生产线上,可高效测量批量齿轮的尺寸精度,实时监测齿轮质量,自动剔除不合格品,形成“生产-检测-分选”自动化流水线;对齿轮外观缺陷进行识别和分类,实现大批量齿轮的“应检尽检”,用“大数据”手段分析齿轮工艺问题,与生产管控系统互联,及时调整工艺参数,减少损失;实现齿轮质量长期监测,及时发现齿轮质量的异常变化;可实现网络化监管和远程监控,即使在千里之外也可以监控整个生产过程,把握生产动态。
在未来,齿轮视觉检测技术必将纳入更多先进的科学技术,齿轮视觉检测仪器也将集成更多新技术,并充分发挥各项技术的优点,提升检测效率和精度。三维视觉检测技术、视觉检测设备的复合化、微型化和智能化将是齿轮视觉检测技术的发展趋势。未来每条齿轮产线的生产动态都可以集成到一个软件中进行分析,检测数据实时存储到云端,长期积累的庞大数据将为齿轮生产工艺带来巨大的变革。毫不夸张地说,视觉检测技术将会带来齿轮检测领域的革命,现在还仅仅处于入门口。